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1. Introduction 

This preliminary report is concerned with an approximate 

description of the two dimensional vortical motion in a thin 

spherical layer of a gravitating, incompressible, inviscid fluid. 

We suppose that the fluid is contained between an inner rigid 

ball and an outer rigid concentric sphere and that the fluid, 

along with the inner spherical surface, has been rotating with 

constant angular velocity to about a polar axis until a reference 

time t = 0.  Thereafter we suppose that the motion is due to the 

gravitational attraction of the rotating ball and to the sudden 

creation at t = 0 of concentrated vortices with axis normal to 

the spheres. 

The general objective is to discuss the subsequent motion 

of these isolated vortices, including the case for which QD = 0. 

However, in this report we confine the discussion primarily to 

the motion of a single concentrated vortex in the northern hemi- 

sphere when certain equatorial boundary conditions are imposed. 

The differential equations for the motion of such a vortex appear 

below; and they are followed by an approximate description of its 

geometric path for a period of time of such duration that it is 

not necessary to use a computer for the numerical integration of 

the equations. 

There are many physical phenomena whi^h are related to the 

motion of vortices in a rotating fluid; and the analysis of this 

kind of motion poses various inherently interesting mathematical 

problems.  Here, the investigation was undertaken with the hope 
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that the results could be used to approximate roughly the path 

of a hurricane generated in the northern hemisphere. 

2.   Formulation 

Let a and a+h be the radii of two rigid concentric spheres 

which contain a spherical layer of fluid.  Suppose that h > 0 is 

small compared with a; and that the inner spnere rotates about 

its polar axis with constant angular velocity co.     Let  the motion 

of the fluid be referred to the inner sphere.  Let p denote the 

distance of a fluid particle from the center of the sphere while 

^ and 6   respectively denote its longitude and colatitude.  In 

terms of these coordinates the velocity of a particle relative 

.to the inner rotating sphere is defined by the components 

u = (ps:ne) ^| =  tangential component toward the east; 

v = -P ^f-      ■ tangential component toward the north; 

• "■ 7W        ■ radial component. 

If the only body force acting is that due to the gravita- 

tional attraction of the solid ball defined by the inner sphere, 

then the basic hydrodynamical equations which define the motion 

of the fluid are the continuity ^qua^ion 

hp^vi 
p     dp sin 0 

and  the momentum  equations 

du       h{y a 1 n g ) 
■   Ü 
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du _  uvctO  +  uw   h  2aJM 6ln ü _ 2a)V coa g   ^ 
dt p p 

dv     vw , u cot 6      n   ,      _ fl -TT-   t       4-       +   ^(DU   COS   e 
at        p p 

o 
dw 
TC " "5" 

2a)U  sin 0  = -g - 

.1 

^0 

of . 
ö 88 ' 

1 
^0 

op 
^p • 

In  these  equations  the  differential  operator with  respect  to  the 

time means 

d   -   ^   + u A       Y Jt + W j   . 
"ST     ^t      p BIS 0 d^      p "5^" "^P  * 

The symbol 5  denotes the constant density of the fluid; p denotes 

the pressure; and gp denotes the gravitational potential modified 

by the centrifugal effect of rotation. 

Since h is small compared with the large radius a of the 

inner schere; and since 

w (4,e,a+h,t) - w(^,e,a,t) - o 

let us assume that the radial velocity and the radial variation 

of u and v can be neglected. U  ', us also assume that the motion 

is such that the nonlinear terms in the tangential momentum equa- 

tions can be neglected; and that the radial momentum equation can 

be replaced with the hydrostatic law 

p{^Ö#p»t) - p(M,a,t)-g60(p-a) • 

Under these assumptions which characterize the linear shallow 

water theory; and with the notation 

latllltll.HI>  liirifl r,,-—----^  ■—-      ■ 
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U(4,e,t) = u(^Ö,a,t) , 

v(^e,t) = v(|>,0,a,t) , 

P(i»ö,t)   -  p(^0,a,t)   ; 

an approximation to the motion is determined by the equati 

(2.1) £H ^ ^(v Bin 6) 

(2.2) 

ons 

tf 55" o | 

-v— - 2a)V cos 6 = - I    ^p 
B^5 •sln B tf ' 

(2.3)        ll + 2^ cos e = i |P . 

The elimination of p from (2.2) and (2.5) and the use of 

(2.1) leads to the equation 

(2.4) h 1 |d(ü sin 6)       dv 
+ 2cm  sin 6 

a 0 . 

It should be remarked that the quantity 

C .1 
a sTn B 

^(u sin 9) , ^y 
»   ^ 

is   the   radial  component  of vorticity when  radial variations  are 

neglected.     An  integration of   (2.4)  yields 

(2.5) 
1 

a si FIT 
du   Bin  0        c*v 

58 Sf 

t 
2a)   /    ~ 

+ —  /      v   Gin  0  dx ■ C(^ö,o) 
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where  ^{^,6,0)   represents the vorticity  prevalent  in the   fluid 

layer at  time  t  =  0. 

The  equations   (2.1)  and  {2,5)  are   the  basic  ones  for the 

motion under consideration.     Thoy  can be   studied by  Introducing 

the  function f(^,B,t)  and setting 

(2.6) 

(2.7) 

(a si i» •) & 
~       1   ail/ U = ä^ 

M d0      ~        1 
'   am ~ V -  a r.in  0 ^ ' 

in  this way   (2.1)   is  automatically  satisfied.     Then  if we   sub- 

Btitute   (2.6)   and   (2.?)   In   (2»5)  we  find  ^ must  satisfy 

(2.8) 1       d (sine)|| 

The  problem now   is   to find a function ?// which satisfies  certain 

prescribed conditions  along  the  boundary  of  a domain D  on the 

reference  sphere;   and  satisfies   (2.8)   at  each point  of D.     Before 

we  consider  this  problem,   however,   let  us   discuss briefly  the 

simpler case   In which  the  spheres  are   fixed  and  the  contained 

spherical  layer  of  fluid is motionless  until  t = 0. 

J,   The   Case   of  no  Rotation 

If a) • 0  the   equation   (2.8)  become: 

(3.1) d^^f^ll-^'0' 
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It is  interesting to  observe  that   if we  use  the  transformation, 

(see Fig.   1), 

ii      , öx   i(|) z  =  re  Y = (a tan^je   T ■ x + iy  , 

then (3.1) can be reduced to the ordinary two dimensional poten- 

tial equation.  For example, suppose we wish to analvze the 

motion of a concentrated vortex in the zonal layer defined by 

/"a < Ö < ß 

D :   \ 

;' 0 < {) < 2Tr 

on the  reference  sphere  subject  to  the  requirement  that  along 

the boundary  the  normal velocity  v must be  zero  along ö = ct and 

0 = ß.     If we  use   the  above  transformation the  problem can be 

reduced  to  solving 

o p 
(3.2) «!| + r|- ^6(x-x1)8(y-y1) 

^x        &y 

for the  annular domain 

o - « ^ . *«« ß I q,   =  a  tan ^- <   r  <  a  tan H. =  q, 

0  ■■■  $  <  2IT 

with the boundary conditions 

In equation (3 •2) M- represent;-! the strength of the vortex; 5 

stands for the Dirac delta function; and x-,, y-, correspond to 

the position of the vortex on the sphere. 

■MM -•■' -|>»MaMI  I tl 'I 
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It should be remarkeu that the annular domain D is a 

stereographic projection of the zone D ft£ Fig. 1 indicates. 

The above observatiors suggest the possibility of de- 

veloping a general theory for the motion of concentrated vortices 

on a fixed sphere.  In the course of doing this the author found 

that it is basically analogous to the Helmholtz-Kirchoff theory 

for the planar motion of rectilinear vortices. 

4, Fundamental Solution.  Concentrated Vortex on a Rotating 

Sphere 

Let us return now to the equation (2.8) which can be 

written in the form 

t 
r^s 

0 

This equation can be analyzed in several different ways.  One way 

is to introduce em appropriate Green's function and then present 

the partial differential equation as an integral equation.  The 

Neumann expansion of the integral equation leaas to 

n=l 

It can be shown that the function in this expansion must satisfy 

M^aMMtfHM fcj*"'-A-^--'
J
—■ ■ ^ - - -■ 



1    " I II       1   H 11 . i   i     .1 ... j IIIM '     " '    '    ' ' — 

Figure   I 
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^,/,o = tr(ik,eto) , 

and therefore, by virtue of the transformation 

z = (a tan -^je r , 

they can be determined by solving a sequence of ordinary poten- 

tial problems. 

Another way to solve (4.1) is to use transform theory based 

on finite Fourier transforms in conjunction with Leßendre trans- 

forms.  This way seems most convenient for our immediate aim 

which is to find the function J associated with the creation at 

t = 0 of a vortex of strength n concentrated at (^fÖjJ where 

0 < 0-^ < TT . 

In other words, our first object is to solve 

~ sin   W. 1 

for 

0<G<7r,        0  <  $  ■■■ 2Tr  ; 

that  is,   for the whole   sphere  excluding the  south  pole where 

Q((|1,P,t) may be  singular. 

Let  us  assume   that   the  behavior  of G  at  the   south pole  is 

such that 

MM 
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Lg^  sin 0  G((t>,e,t)   = 0 , 

^G 
La       sin e -TTT = const. 

Under these assumptions it is known that G can be expressed in 

the form 

A(0,t) 

(4.3) G(|,e,t) = 

T  oo        n  /   \, 

n=l       m=l v   / 

A (t)cos mtj) nmv '    T 

+Bnm(t)sin mb 

^(cos 0) nv    ' 

where the coefficients are the transforms 

2w 

A(e,t) = /  G(a,e, t)da ; 

0 

2Tr  TT 

Aniri(t)  = ü(a, ß,t)cos ma  ^(cos ß)sinßdßda  ; 

0    0 

B     (t) •  /     /     G(a,0,t)sin ma PJJ(COS  ß)sinßdßda   . 

0     0 

The   function  P:(cos  0)   is   tlie  associated  Legendre  spherical 

harmonic  of degree  n and   order m.     It  can be  defined  by 

^(cos  0)   =   I 

(-l)m(sin  0)'"(,;  gfi  ff)\(coa  0)   ,       m  < n 

0   , m  > n 

and  it  satisfies 

10 
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i   wm. wurutü (.m •) ^ ^(co. ») 

„(n+i) . _5_ 
sin 0 

V(cos e) 

0   . 

Notice  that  no previous  condition  on G  is  affected   if we  change 

G by  a constant. 

The  transform k{Q,t)  must be  continuous  at  G  =  9-   and 

satisfy 

L  (sin 9) |§ - iibii -0^   . 

Since A(e,t)  must  be  bounded  at  6  =  0,   the  solution  of  the  last 

equation,   excepting  an  additive  constant,   is  uniquely  fivn  by 

9, 

(4.4) k{e) m 

p.   gn tan «v , 

M.  ^n  tan «    , 

0   < 

o1  < ( 

This  function can be  expanded  in  ehe   form 

"ST £n C( T 
(4.5)       A(6)   = 

nn 
-Pn(co8 91))Pn{coi o) 

11= 

where  Pn(     )  -  P°(     )• 

The  transforms A^Ct)  and B    (t) must  satisfy 

-n(n+l)Aniri(t)-t- 2011) J     B
!lin(

T)dT  = u  C0B »^«iJCcoS  91)   , 
0 

11 
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-n(nf-l)Bmri(t)- 2mJ    Amn(T)dT  = n   sin m^• pj^cos  0^ 

0 

and  these yield 

nP^cos  6. ) 
A     (t)   =  -       n   .     .J- T«'   ' n(^lj      C0K "  [^i - TTIITTT]   • 

(4.6) 

B    (t) 
n(n+lj Bin m 

\J.l       n(n+l 

The substitution of these transforms in (4.3) ^ives 

(4.7) 0(M,t) 
A(0) 

"  (ai+1) -£- (n-m)! 
~ ^ ^TTHTT ^ tTTTFTr ^(^s01)^(cose) 

[♦-♦l+l*]   ' cos m 

Next, the addition theorem 

(4.8)  Pn[Gos 6 cos ei + sin 0 sin 6, cos A] 

Pn(co« ö)Pn(cos e1) 

shows that we can write 

12 
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(4.9)     o(M,t) ■ 

U     »   (2n+l) 
" W f—T nTrvTTJ 

n 

A(e) 

cos  0  cos  0- 

•sin 6 sinO-j^ COs(f - ^ H n/n+l)) 

_Pn(cos  01)Pn(cos  0) 

Hence,   from  (4.5),   we  see  th»t G(i,0,t)  can be  exhibited  in the 

form 

0. 

(4.10)   o(M,t) ■ 

n 

.      «   (2n-fl)    / 

- w *n cos 4 
COS    0    COS    0-, 

_ -l 

2ajt 
+sin 0 sinG-j^ cos((i) - ^ + n(Pfl)) 

(-l)nPn(cos   0) 

Finally,   by using 

OD 

I^ITTTT+TT (4.11) 

we  find that 

(4.12)     G(M,t)   ■ 

(2n+l)   /   ,^     fx\  . I  +   on   (1+x) 

n(n+l)   (-1)   PnlXj       1 +   ^n       g 

27r 

U     X     V^iii'  x/     p 

Ii7 Z_ n(nflj     n 

1 Dl     . 0 .i+ ^n cos -^ + |n  cos -^ 

cos  0  cos  0-, 

2a)t 
+ sin 0 sin©-!^ cos((|) - ^ + n(n-t-l)) 

15 
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1 e-\ The  reason  for retaining the  constant •£+ in cos -J- is  that when 

we do 

OCM, t) = G((}),Ü,t;^1,01) 

is symmetric in 0 and 0,. 

Except for (^»0^) and the south pole, the velocity compo- 

nents are given by 

dG .       i   da 
a sin 0 51 * 

u = äW  '' 

The velocity field in the neighborhood of the concentrated vortex 

can be estimated by studying the first term of the expansion of 

G(!f),0,t) in powers of «t, namely 

(4.13)  Go(i0,t) - 
- ^F|_; +■ 2 £n cos -^-+ 2 ^n cos 

a*2.  (2n+l) 
W f^rj n(n+l) Fn 

COS 0 COS 0. 

+sin 0 sin 6, COt(4 - ^ ) 

U 

0 
-1 - In cos " -^ - ^n cos^ « 1 
+ 1 + in 

1 - cos © cos 0-, - sin 0 sin 0, cos(^ - ^. ) 

-l^rln    tan   ?+tan2^- 2tin|t«n-i cos((f;- (},   ) W l.dH--- 

This gives the dominant part of the velocity of a point near 

(♦i»^).  It corresponds to the case of no rotation; and if we 

transform to the z-plane introduced above via 

14 
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e L4 
z = a t,an "^ e 

we have 

(4.14) 
ao =^ «nCz-z^CT-I^-^ en 

2 a 

^Re enCT-z^-^ln a 

where Bj is the image of (fp^) and Re ?{z)   denotes the real 

part oi   f'(z).  The velocity components determined by QQ  can be 

calculated from 

~   i   o 
uo = ä-5^ 

u(a2+zz) R() Re 

4Tra Jzz 

to 

z - z- 

1Z 
V  = 
0 a sin B "^J- 

4 Tra /zz 

These show that as z - z1 the velocity approaches infinity; but 

ti." component in the direction from z to z1 is zero.  Therefore in 

the neighborhood of l^,^) the fluid rotates about the vortex 

point with velocity of the order of p-f-f     Froni thiG, " Can be 

deduced that the velocity field defined by G in the neighborhood 

of (4 ,0   )  behaves qualitatively in the same way as the field 

defined by G .  In other words, the concentrated vortex at (^,0^ 

has no tendency to move - it is not self propelling. 

Notice that if the vortex is at the north pole, i.e.. 

e = o, then 

iL 
Si 

+ tn  cos §1 
0(4,0,^^,0) - 

|1 ^_ (2nH) p ,    0) 
- 7]7 2^ ■n(nfl) PnlC08  j 

15 
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^ 

G(^0,t;(|)1,O)   - O0(i,0,^^,0) 

W p'n tan ? 

This   function is   such  that 

Lö_>0 BtneOgCM.tl^O) =7^ • 

5. Conconti^ated Vortex in Northern Hem is pin-re.  Either Velocity 

Coinpüneni, Zero at the Equator 

We proceed to find the stream function for a concentrated 

vortex traveling in the northern hemisphere and subject to the 

condition that the normal velocity of the fluid at the equator it 

zero.  The boundary condition then is 

or 

?(♦,£,t) - c(t) . 

However, we know that nothing is lost if we impose 

^(4), J,t) = 0 . 

The stream function for this case can be formed from 

G( t{), 0, t; ^,, 6 ) if we assume that the principle of reflection 

across the equator will lead toward the desired result.  In fact, 

it is easy to verify that 

(5.1)      f =  GKM, t;iI,ö1) - OCMjti^ir - V 

16 
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is the desired function.  We refrain from a discussion of the 

velocity field defined by (5,1) in favor of the next case in 

which the eastward velocity 

s-^i 
is prescribed at the equator. 

We turn to the problem of finding f  such that with the 

boundary condition 

•g* fgi^V»*)  " G = const, 

the equation 

Bin  0   dtp -L     0't> 

i^U- ^1)6{e-e1) 
sin  CTj 

is   satisfied  for 

0  <  ^  <  2TT   ,        0  <  0   < 

If we  assume  that 

U 
(5.3) V>0  sin 0^  =^ 

ai  integration  of   (5.2)   over  the  northern hemisphere  yields 

27r 

0 

This shows tha. the prescription of ^((f), ^,t) must satisfy the 

compatability condition (5»4),  If we wish to satisfy 

17 
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then we must  have 

^(♦# 5»t) ■ac 

H0 = 27rac -u 

As we have seen, the condition (5«3) is satisfied by 

-2 (K^ö^tl^O) - gS In tan | . 

Consider the  function 

(5.5) *{M»t) 
^o 0 ^ in  tan ^ 

+G(^0,t;4)1,ei) +0(^,6^1^,» -ei) 

A short  computation shows   that 

faiti «»"t) 
M. o +ji_ 

ßVfi 7i ^    - ^p--^ 

Hence (5.5) satisfies the boundary condition that the eastward 

velocity at the equator is constant and equal to c if 

[i    =  2Trac - u . 

Wo have now shown that 

(5.6)   fii,e,t) 
(27raL-^ &n  tan | "^r 

+G(<|),0,t;^1,01) 4-0(4,0,^^,» -Oj ) 

is the desired stream function. 

Let us turn our attention to a study of the path of the 

vortex at [;{>-,( t), 0( t)"] .  Ar, in the basic Hehnholtz theory for 

18 

mmmmm MM   



■ WWM^w^wvi^Hmm^wwpa"!" i     '  ' "■^■■^■^W -^^^—i      ■ imwt^m~^^m 

the  motion of interacting concentrated vortices, the velocity of 

the vortex at [c^ t), 0^ t)] is equal to the field velocity deter- 

mined at [♦1»ö1] by all of the other vortices.  That is, the 

equations for the motion of the vortex are 

and 

^1 = -?— a sm 

0 
# 

foS!-^ in tan i 

+G{b,e,t;bJ,ir - e1) 

 IT [0(^0»tik,»-«,) 
In Ö. Of I ^ J a sm B 

9-6. 

In expanded form these are 

(5.7)     ^ -^i 
d*l .      (grracQ 

"2—"TT + u 

^^  sin^l       STra2  cos2^ 

u  cos ^     ao_  (on+1)     , 

4ir a 

-cos e. 

.   2„ 2ü)t 
+s:Ln 0l cos TTTTTTTT 

and 

1 + cos »oat 
n(iuU 

(5.3)     0 
do 

7~ fcr ^TITT pn iW 

.COF20. 

+sin ei  cos TTTH+n 

• sin ,   0' 

ndifl)     * 

19 
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It seems J.liat numerical integration is necessary in order 

to trace the path of the vortex for moderately large or- large 

values of cut.  Our intention is to pursue this in a later report; 

however, as a preliminary step, we can assume that cot is so small 

that a sufficiently good approximation to the path can be found 
■ 

by expanding (JK and 0, in powers of »t and retaining those of 

degree no higher than the second. In addition let us suppose 

hereafter that c = 0. 

If each term in (5»7) and (r;.a) is expanded in powers of 

cut; and if we retain powers no higher than the second we find 
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The series which appear in the last equations can be summed and 

they lead to 
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(5.12) 01 = 

Luot In cos 6. 
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In order to express (f)-, and 9- in powers of t explicitly we need 

to expand cos 0-.   in powers of t and insert the expansion in 

(5.11) and (5.12).  If we do this and retain only pov.ers of t 

less than the third we find 
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where 0  is the colatitude of the initial position of the vortex, 
o 

The approximate equations (5.13) and (5.1^) show the 

following if |i, the strength of the vortex, is positive; and 0o 

is greater than TT/J. When cot  is very small the vortex moves 

along a path which is almost parabolic.  Since -aO    is the vel- 

ocity to the north, equation (5.14) shows that the rate of change 

of latitude is zero at t = 0 and the latitude increases as t 

increases.  Equation (5.15) shows that the vortex starts with a 

westward motion but after a whil. the positive term 
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becomes dominant and the vortex then moves to the east.  The 

following figure shows a qualitative sketch of the path. 

I 
f« 

♦. 

Figure   2 

This sketch exhibits some of the characteristics of the observed 

paths of hurricanes generated in the Caribbean sea or some other 

southern part of the North Atlantic ocean. 
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